These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Viscum articulatum Burm. f. aqueous extract exerts antiproliferative effect and induces cell cycle arrest and apoptosis in leukemia cells.
    Author: Mishra R, Sharma S, Sharma RS, Singh S, Sardesai MM, Sharma S, Mishra V.
    Journal: J Ethnopharmacol; 2018 Jun 12; 219():91-102. PubMed ID: 29555410.
    Abstract:
    ETHNOPHARMACOLOGICAL RELEVANCE: Viscum articulatum Burm. f. (leafless mistletoe) has been used in traditional system of medicines in India, China, Taiwan, Cambodia, Laos, and Vietnam, to treat blood-related diseases and various inflammatory and degenerative diseases including cancer. Anticancer activities of some phytomolecules purified from Viscum articulatum Burm. f. have been tested. However scientific evidence for the anticancerous potential of aqueous extract of V. articularum (VAQE) used in traditional medicine is lacking. AIM OF THE STUDY: To study the antiproliferative and apoptotic effect of VAQE on Jurkat E6.1 and THP1 leukemia cells. MATERIALS AND METHODS: The aqueous extract of the whole plant of Viscum articulatum Burm. f. was prepared in phosphate buffer saline. In VAQE, total soluble protein was estimated using Bradford's dye-binding assay; flavonoid content was determined using aluminum chloride colorimetric assay; and phenolic content was estimated following Folin-Ciocalteu colorimetric assay. XTT cell viability assay was used to test VAQE induced cytotoxicity in Jurkat E6.1 and THP1 leukemia cells and peripheral blood mononuclear cells (PBMC). The effect of VAQE on cell cycle progression was analyzed by PI staining using flow cytometry. Annexin-V-FITC/PI differential staining method was used for detecting the onset of apoptosis in leukemia cells. Rhodamine 123 dye was used to detect the change in mitochondrial membrane potential (MMP) using flow cytometry. DCF-DA fluorescence dye was used to estimate the level of reactive oxygen species (ROS). The ROS inhibitors were used to evaluate the role of ROS in mediating DNA degradation in VAQE-treated leukemia cells. The molecular mechanisms underlying VAQE induced apoptosis induction was studied by analyzing the expression of anti-apoptotic (Bcl-2) and pro-apoptotic (Bax) proteins, caspase-8 and caspase-3 enzymes using western blot. Diphenylamine (DPA) assay was used to determine the DNA fragmentation and conclusion of apoptosis. RESULTS: VAQE triggered cytotoxic effect on Jurkat E6.1 (IC50-2.4 µg/ml; 24 h) and THP1 (IC50-1.0 µg/ml; 24 h) cells in a dose- and time-dependent manner. The apoptosis induction and G2/M arrest of the cell cycle are the cause of VAQE-induced cytotoxicity in leukemia cells. The apoptosis in VAQE-treated Jurkat E6.1 and THP1 cells was mediated via a reduction in MMP, elevation of intracellular ROS, decreased expression of the anti-apoptotic (Bcl-2) and increased expression of the pro-apoptotic (Bax) protein, activation of caspase-8 and caspase-3 and DNA fragmentation. CONCLUSION: VAQE has a high efficacy to exert a cytotoxic effect in Jurkat E6.1 and THP1 cells and to induce apoptosis and G2/M cell cycle arrest. VAQE induces extrinsic pathway of apoptosis in both the leukemia cell lines via disruption of MMP, intracellular ROS imbalance, increased ratio of Bax/Bcl-2, activation of caspase-8, caspase-3 and ROS-mediated DNA fragmentation. The knowledge gained from the outcomes of the study may encourage the identification of novel chemotherapeutic agent from Viscum articulatum Burm. f. to treat leukemia.
    [Abstract] [Full Text] [Related] [New Search]