These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effective production of biologically active water-soluble β-1,3-glucan by a coupled system of Agrobacterium sp. and Trichoderma harzianum. Author: Liang Y, Zhu L, Gao M, Wu J, Zhan X. Journal: Prep Biochem Biotechnol; 2018 May 28; 48(5):446-456. PubMed ID: 29561218. Abstract: Water-soluble β-1,3-glucan (w-glucan) prepared from curdlan is reported to possess various bioactive and medicinal properties. To develop an efficient and cost-effective microbial fermentation method for the direct production of w-glucan, a coupled fermentation system of Agrobacterium sp. and Trichoderma harzianum (CFS-AT) was established. The effects of Tween-80, glucose flow rate, and the use of a dissolved oxygen (DO) control strategy on w-glucan production were assessed. The addition of 10 g L-1 Tween-80 to the CFS-AT enhanced w-glucan production, presumably by loosening the curdlan ultrastructure and increasing the efficiency of curdlan hydrolysis. A two-stage glucose and DO control strategy was optimal for w-glucan production. At the T. harzianum cell growth stage, the optimal glucose flow rate and agitation speed were 2.0 g L-1 hr-1 and 600 rpm, respectively, and at the w-glucan production stage, they were 0.5 g L-1 hr-1 and 400 rpm, respectively. W-glucan production reached 17.31 g L-1, with a degree of polymerization of 19-25. Furthermore, w-glucan at high concentrations exhibited anti-tumor activity against MCF-7, HepG2, and Hela cancer cells in vitro. This study provides a novel, cost-effective, eco-friendly, and efficient microbial fermentation method for the direct production of biologically active w-glucan.[Abstract] [Full Text] [Related] [New Search]