These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protective effects of α-mangostin against acetaminophen-induced acute liver injury in mice. Author: Fu T, Wang S, Liu J, Cai E, Li H, Li P, Zhao Y. Journal: Eur J Pharmacol; 2018 May 15; 827():173-180. PubMed ID: 29563064. Abstract: The purpose of this study was to evaluate the protective effects of α-mangostin against acetaminophen (APAP)-induced acute liver injury and discover its potential mechanisms in mice. Mice were continuously treated with α-mangostin (12.5 and 25 mg/kg) by intragastric administration once daily for 6 days, and injected intraperitoneally with APAP (300 mg/kg) after 1 h of α-mangostin administration on the last day. After APAP exposure for 24 h, the liver and serum were gathered to evaluate the hepatotoxicity. The results showed that α-mangostin effectively decreased the serum levels of alanine aminotransferase, aspartate transaminase, tumor necrosis factor (TNF-α), interleukin-1β and 6 (IL-1β, IL-6), and hepatic malondialdehyde level; and recovered hepatic glutathione (GSH), superoxide dismutase and catalase activities. Liver histopathological observation provided further evidence that α-mangostin pretreatment significantly inhibited APAP-induced hepatocellular necrosis, infiltration of inflammatory cell and hyperemia. According to the analysis of western-blot and RT-PCR detection, α-mangostin pretreatment validly inhibited the phosphorylation of ERK, JNK and p38 MAPK induced by APAP, which was consistent with the changes of TNF-α, IL-6 and IL-1β levels; the phosphorylation of IκBα and the translocation of NF-κBp65 were also attenuated by α-mangostin. These results provided a new mechanism for the protective effects of α-mangostin against APAP-induced acute liver injury. α-Mangostin significantly restrainted the oxidative stress induced by APAP. Moreover, the anti-inflammatory property of α-mangostin, which is mediated by the NF-κB and MAPK signaling pathways, also contributed to its hepatoprotective effect. Taken together, we believed that α-mangostin might be a potential material for drug development against drug-related hepatotoxicity.[Abstract] [Full Text] [Related] [New Search]