These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Beyond fractional anisotropy in amyotrophic lateral sclerosis: the value of mean, axial, and radial diffusivity and its correlation with electrophysiological conductivity changes. Author: Geraldo AF, Pereira J, Nunes P, Reimão S, Sousa R, Castelo-Branco M, Pinto S, Campos JG, de Carvalho M. Journal: Neuroradiology; 2018 May; 60(5):505-515. PubMed ID: 29564498. Abstract: PURPOSE: This paper aims to analyze the contribution of mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in the detection of microstructural abnormalities in amyotrophic lateral sclerosis (ALS) and to evaluate the degree of agreement between structural and functional changes through concomitant diffusion tensor imaging (DTI), transcranial magnetic stimulation (TMS), and clinical assessment. METHODS: Fourteen patients with ALS and 11 healthy, age- and gender-matched controls were included. All participants underwent magnetic resonance imaging including DTI. TMS was additionally performed in ALS patients. Differences in the distribution of DTI-derived measures were assessed using tract-based spatial statistical (TBSS) and volume of interest (VOI) analyses. Correlations between clinical, imaging, and neurophysiological findings were also assessed through TBSS. RESULTS: ALS patients showed a significant increase in AD and MD involving the corticospinal tract (CST) and the pre-frontal white matter in the right posterior limb of the internal capsule (p < 0.05) when compared to the control group using TBSS, confirmed by VOI analyses. VOI analyses also showed increased AD in the corpus callosum (p < 0.05) in ALS patients. Fractional anisotropy (FA) in the right CST correlated significantly with upper motor neuron (UMN) score (r = - 0.79, p < 0.05), and right abductor digiti minimi central motor conduction time was highly correlated with RD in the left posterior internal capsule (r = - 0.81, p < 0.05). No other significant correlation was found. CONCLUSION: MD, AD, and RD, besides FA, are able to further detect and characterize neurodegeneration in ALS. Furthermore, TMS and DTI appear to have a role as complementary diagnostic biomarkers of UMN dysfunction.[Abstract] [Full Text] [Related] [New Search]