These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: High-Performance Flexible Single-Crystalline Silicon Nanomembrane Thin-Film Transistors with High- k Nb2O5-Bi2O3-MgO Ceramics as Gate Dielectric on a Plastic Substrate.
    Author: Qin G, Zhang Y, Lan K, Li L, Ma J, Yu S.
    Journal: ACS Appl Mater Interfaces; 2018 Apr 18; 10(15):12798-12806. PubMed ID: 29564894.
    Abstract:
    A novel method of fabricating flexible thin-film transistor based on single-crystalline Si nanomembrane (SiNM) with high- k Nb2O5-Bi2O3-MgO (BMN) ceramic gate dielectric on a plastic substrate is demonstrated in this paper. SiNMs are successfully transferred to a flexible polyethylene terephthalate substrate, which has been plated with indium-tin-oxide (ITO) conductive layer and high- k BMN ceramic gate dielectric layer by room-temperature magnetron sputtering. The BMN ceramic gate dielectric layer demonstrates as high as ∼109 dielectric constant, with only dozens of pA current leakage. The Si-BMN-ITO heterostructure has only ∼nA leakage current at the applied voltage of 3 V. The transistor is shown to work at a high current on/off ratio of above 104, and the threshold voltage is ∼1.3 V, with over 200 cm2/(V s) effective channel electron mobility. Bending tests have been conducted and show that the flexible transistors have good tolerance on mechanical bending strains. These characteristics indicate that the flexible single-crystalline SiNM transistors with BMN ceramics as gate dielectric have great potential for applications in high-performance integrated flexible circuit.
    [Abstract] [Full Text] [Related] [New Search]