These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protein Separation Coacervation with Carboxymethyl Cellulose of Different Substitution Degree: Noninteracting Behavior of Bowman-Birk Chymotrypsin Inhibitor.
    Author: Li X, Long J, Hua Y, Chen Y, Kong X, Zhang C.
    Journal: J Agric Food Chem; 2018 May 02; 66(17):4439-4448. PubMed ID: 29565587.
    Abstract:
    We first observed that protein/polysaccharide interaction exhibited noninteracting behavior which makes Bowman-Birk chymotrypsin inhibitor (BBI) always free of complexation, being separated from another protein with similar isoelectric points, Kunitz trypsin inhibitor (KTI). Turbidity titrations showed that the electrostatic attractions were much stronger between KTI/BBI (KBi) and carboxymethyl cellulose of higher substitution degree. Unchanged chymotrypsin inhibitory activity (CIA) indicated that BBI had negligible contribution to protein recovery and trypsin inhibitory activity (TIA). Tricine-SDS-PAGE revealed that, at r = 20:1-2:1, unbound BBI was left in the supernatant when bound KTI transferred into precipitates, even if there was excess negative charge. Thus, purified KTI or BBI was achieved easily at the given conditions. The noninteracting behavior of BBI was further confirmed by ITC, where the binding enthalpy of BBI to CMC was negligible compared with the high binding affinity ( Kb) of KTI. This work will be beneficial to protein purification based on protein-polysaccharide coacervation.
    [Abstract] [Full Text] [Related] [New Search]