These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Anti-arrhythmogenic and anti-inflammatory effects of troxerutin in ischemia/reperfusion injury of diabetic myocardium.
    Author: Najafi M, Noroozi E, Javadi A, Badalzadeh R.
    Journal: Biomed Pharmacother; 2018 Jun; 102():385-391. PubMed ID: 29573617.
    Abstract:
    INTRODUCTION: Medicinal plants are increasingly used in the treatment of cardiovascular diseases due to their multifaceted properties. This study was designed to investigate anti-arrhythmic and anti-inflammatory potentials of the natural bioflavonoid, troxerutin (TXR) in myocardial ischemia/reperfusion (I/R) injury in diabetic rats. METHODS: Male Wistar rats were randomly divided into 4 groups (control, control + TXR [150 mg/kg, daily], diabetic, and diabetic + TXR). Type-1 diabetes was induced by an intraperitoneal injection of streptozotocin (50 mg/kg) and lasted for 10 weeks. After mounting on the Langendorff apparatus, isolated hearts in all groups received a normal Krebs-Henseleit solution for 20 min of stabilization period, followed by 30 min of regional ischemia through ligation of the left anterior descending coronary artery, and 60 min of full reperfusion. During the experiment, the electrocardiograms were recorded and the arrhythmias [number, duration and incidence of premature ventricular complexes (PVC), ventricular tachycardia (VT), ventricular fibrillation (VF), and arrhythmia score] during I/R phases were assessed based on the Lambeth Convention. Ischemic left ventricular samples were used to determine the activities of lactate dehydrogenase (LDH), interleukin-1beta (IL-1β), and tumor necrosis factor (TNF-α). RESULTS: The arrhythmias induced by I/R were not significantly changed in diabetic group as compared to the control group. However, pretreatment with TXR significantly reduced the number of PVC and duration and incidence of VF in ischemic phase in comparison to the untreated animals (P < 0.05). In addition, the duration, and incidence of most arrhythmias during reperfusion phase were significantly declined by TXR administration in both control and diabetic groups (P < 0.05). Pretreatment of rats with TXR significantly reduced myocardial inflammatory cytokines TNF-α and IL-1β levels after I/R insult in diabetic as well as control hearts (P < 0.05). CONCLUSION: Preconditioning with TXR could provide cardioprotection by anti-arrhythmic and anti-inflammatory effects against I/R injury in rat hearts. This effect of TXR can introduce this material as a protective agent in cardiovascular diseases.
    [Abstract] [Full Text] [Related] [New Search]