These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Modification of gum ghatti via grafting with acrylamide and analysis of its flocculation, adsorption, and biodegradation properties. Author: Mittal H, Kumar V, Alhassan SM, Ray SS. Journal: Int J Biol Macromol; 2018 Jul 15; 114():283-294. PubMed ID: 29580994. Abstract: In this work, an environmentally friendly gum ghatti-crosslinked-polyacrylamide (Gg-cl-PAAM) hydrogel was synthesized from gum ghatti (Gg) and acrylamide (AAM) using a microwave-assisted grafting technique, and tested for use in water purification applications as an adsorbent and flocculent. The Gg-cl-PAAM was characterized using SEM, FTIR, and TGA, and displayed pH responsive swelling behavior, with maximum swelling (2117%) observed in solution with neutral pH. The flocculation characteristics of Gg-cl-PAAM were tested in clay solutions as a function of pH, temperature, and the polymer mass loading, showing that the best performance is obtained at neutral pH at 40°C. The adsorption capacities of Gg-cl-PAAM for the removal different dyes such as brilliant green (BG), rhodamine B (RhB), congo red (CR), and methyl orange (MO) were tested, revealing that the adsorption of all dyes followed the Langmuir isotherm model, with qm values of 523.62mgg-1 for BG, 421.60mgg-1 for RhB, 179.09mgg-1 for CR, and 173.69mgg-1 for MO. Finally, the environmentally friendly nature of Gg-cl-PAAM was examined using the soil-burial composting method, which demonstrated 93% degradation of the Gg-cl-PAAM hydrogel within 60days.[Abstract] [Full Text] [Related] [New Search]