These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ocimum basilicum but not Ocimum gratissimum present cytotoxic effects on human breast cancer cell line MCF-7, inducing apoptosis and triggering mTOR/Akt/p70S6K pathway. Author: Torres RG, Casanova L, Carvalho J, Marcondes MC, Costa SS, Sola-Penna M, Zancan P. Journal: J Bioenerg Biomembr; 2018 Apr; 50(2):93-105. PubMed ID: 29589262. Abstract: Breast cancer is the major cause of death by cancer in women worldwide and in spite of the many drugs for its treatment, there is still the need for novel therapies for its control. Ocimum species have been used by traditional medicine to control several diseases, including cancer. We have previously characterized the antidiabetic properties of the unfractionated aqueous leaf extracts of Ocimum basilicum (OB) and Ocimum gratissimum (OG), modulating glucose metabolism in diabetic mice. Since glucose metabolism is primordial for cancer cells survival, we hypothesized that these extracts are effective against cancer cells. The unfractionated aqueous leaf extracts of OB and OG were chemically characterized and tested for their cytotoxic, cytostatic and anti-proliferative properties against the human breast cancer cell line MCF-7. Both extracts presented cytostatic effects with an 80% decrease in MCF-7 cell growth at 1 mg/mL. However, only OB promoted cytotoxic effects, interfering with the cell viability even after interruption of the treatment. Moreover, OB but not OG affected the cell proliferation and metabolism, evaluated in terms of lactate production and intracellular ATP content. After 24 h of treatment, OB treated cells presented an apoptotic profile, while OG treated cells were more necrotic. The treatment with both extracts also activated AMPK, but OB was much more efficient than OG in promoting this. The activation of mTOR signaling, another survival pathway was promoted by OB, whereas OG failed to activate it. In the end, we conclude that OB extract is efficient against the human breast cancer cell line.[Abstract] [Full Text] [Related] [New Search]