These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of Mg2+, anions and cations on the Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum.
    Author: Stefanova HI, Napier RM, East JM, Lee AG.
    Journal: Biochem J; 1987 Aug 01; 245(3):723-30. PubMed ID: 2959278.
    Abstract:
    In a previous paper [Gould, East, Froud, McWhirter, Stefanova & Lee (1986) Biochem. J. 237, 217-227] we presented a kinetic model for the activity of the Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum. Here we extend the model to account for the effects on ATPase activity of Mg2+, cations and anions. We find that Mg2+ concentrations in the millimolar range inhibit ATPase activity, which we attribute to competition between Mg2+ and MgATP for binding to the nucleotide-binding site on the E1 and E2 conformations of the ATPase and on the phosphorylated forms of the ATPase. Competition is also suggested between Mg2+ and MgADP for binding to the phosphorylated form of the ATPase. ATPase activity is increased by low concentrations of K+, Na+ and NH4+, but inhibited by higher concentrations. It is proposed that these effects follow from an increase in the rate of dephosphorylation but a decrease in the rate of the conformational transition E1'PCa2-E2'PCa2 with increasing cation concentration. Li+ and choline+ decrease ATPase activity. Anions also decrease ATPase activity, the effects of I- and SCN- being more marked than that of Cl-. These effects are attributed to binding at the nucleotide-binding site, with a decrease in binding affinity and an increase in 'off' rate constant for the nucleotide.
    [Abstract] [Full Text] [Related] [New Search]