These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A palladium-platinum bimetal nanodendritic melamine network for signal amplification in voltammetric sensing of DNA. Author: Chen J, Yu C, Gao R, Geng Y, Zhao Y, Niu Y, Zhang L, Yu Y, He J. Journal: Mikrochim Acta; 2018 Jan 27; 185(2):138. PubMed ID: 29594436. Abstract: A sandwich-type electrochemical DNA sensor is described for the detection of oligonucleotides typical for MECP2 gene mutations. Palladium nanoparticles (PdNPs) and platinum nanoparticles (PtNPs) were used to synthesize flower-like PdPt nanodendrites (NDs) by a one-pot method. The PdPt NDs possess a high specific surface area and excellent catalytic capabilities. They served as the carrier for the signal DNA probe (SP) and simultaneously catalyze the reduction of hydrogen peroxide (H2O2). The PdPt NDs were modified with melamine, and this results in the formation of a PdPt-melamine network through stable interactions between the PdPt NDs and the three amino groups of each melamine molecule. The network exhibits excellent catalytic ability in enhancing the current signal response in the voltammetric detection of MECP2 gene mutation, best measured at -0.4 V vs. SCE and using H2O2 as the electrochemical probe. In addition, gold nanoflowers were electrodeposited on the electrode interface in order to accelerate electron transfer and to capture the capture probe. The sensor is stable and can detect MECP2 gene mutations in the 1 fmol·L-1 to 1 nmol·L-1 concentration range, with a 0.33 fmol·L-1 lower detection limit at an S/N ratio of 3. Graphical abstract Schematic presentation of electrodes for the determination of the X-linked gene methyl-CpG-binding protein 2 (MECP2). The sensor is based on the electrooxidation of added H2O2 by using the melamine modified palladium platinum bimetal nanodendrites as network signal amplification strategy. This versatile platform expands studies on the detection of monogenic disease.[Abstract] [Full Text] [Related] [New Search]