These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Leakage of soluble microbial products from biological activated carbon filtration in drinking water treatment plants and its influence on health risks. Author: Hong S, Xian-Chun T, Nan-Xiang W, Hong-Bin C. Journal: Chemosphere; 2018 Jul; 202():626-636. PubMed ID: 29597180. Abstract: The application of ozone-biological activated carbon (O3-BAC) as an advanced treatment method in drinking water treatment plants (DWTPs) can help to remove organic micropollutants and further decrease the dissolved organic carbon (DOC) level in finished water. With the increase attention to microbial safety of drinking water, a pre-positioned O3-BAC followed by a sand filter has been implanted into DWTP located in Shanghai, China to increase the biostability of effluents. The results showed that BAC had high removal efficiencies of UV254, DOC and disinfection by-product formation potential (DBPFP). The removal efficiencies between pre- and post-positioned BAC filtrations were similar. Based on the analyses of fluorescence excitation-emission matrix spectrophotometry (FEEM), the generation and leakage of soluble microbial products (SMPs) were found in both two BAC filtrations on account of the increased fluorescence intensities and fluorescence regional integration (FRI) distribution of protein-like organics, as well as the enhanced biological index (BIX). The leakage of SMPs produced by metabolism of microbes during BAC process resulted in increased DBPFP yield and carcinogenic factor per unit of DOC (CF/DOC). Although BAC filtration reduced the DBPFP and CF, there still was high health risk of effluents for the production of SMPs. Therefore, the health risks for SMPs generated by BAC filtration in drinking water advanced treatment process should be addressed, especially with that at high temperature.[Abstract] [Full Text] [Related] [New Search]