These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 3'-Formyl phosphate-ended DNA: high-energy intermediate in antibiotic-induced DNA sugar damage.
    Author: Chin DH, Kappen LS, Goldberg IH.
    Journal: Proc Natl Acad Sci U S A; 1987 Oct; 84(20):7070-4. PubMed ID: 2959956.
    Abstract:
    Under anaerobic conditions where the nitroaromatic radiation-sensitizer misonidazole substitutes for dioxygen, DNA strand breakage (gaps with phosphate residues at each end) by the nonprotein chromophore of the antitumor antibiotic neocarzinostatin (NCS-Chrom) is associated with the generation of a reactive form of formate from the C-5' of deoxyribose of thymidylate residues. Such lesions account for a minority (10-15%) of the strand breakage found in the aerobic reaction without misonidazole. Amino-containing nucleophiles such as tris(hydroxymethyl)aminomethane (Tris) and hydroxylamine act as acceptors for the activated formate. The amount of [3H]formyl hydroxamate produced from DNA labeled with [5'-3H]thymidine is comparable to the spontaneously released thymine. During the course of the reaction, misonidazole undergoes a DNA-dependent reduction and subsequent conjugation with glutathione used to activate NCS-Chrom. From these and earlier results, we propose a possible mechanism in which the carbon-centered radical formed at C-5' by hydrogen atom abstraction by thiol-activated NCS-Chrom reacts anaerobically with misonidazole to form a nitroxyl-radical-adduct intermediate, which fragments to produce an oxy radical at C-5'. beta-Fragmentation results in cleavage between C-5' and C-4' with the generation of 3'-formyl phosphate-ended DNA, a high-energy form of formate, which spontaneously hydrolyzes, releasing formate and creating a 3'-phosphate end, or transfers the formyl moiety to available nucleophiles. A similar mechanism, involving dioxygen addition, is probably responsible for the 10-15% DNA gap formation in the aerobic reaction.
    [Abstract] [Full Text] [Related] [New Search]