These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Headless compression screw for horizontal medial malleolus fractures.
    Author: Cheng RZ, Wegner AM, Behn AW, Amanatullah DF.
    Journal: Clin Biomech (Bristol, Avon); 2018 Jun; 55():1-6. PubMed ID: 29604557.
    Abstract:
    BACKGROUND: Horizontal medial malleolus fractures are caused by the application of rotational force through the ankle joint in several orientations. Multiple techniques are available for the fixation of medial malleolar fractures. METHODS: Horizontal medial malleolus osteotomies were performed in eighteen synthetic distal tibiae and randomized into two fixation groups: 1) two parallel unicortical cancellous screws or 2) two Acutrak 2 headless compression screws. Specimens were subjected to offset axial tension loading. Frontal plane interfragmentary motion was monitored. FINDINGS: The headless compression group (1699 (SD 947) N/mm) had significantly greater proximal-distal stiffness than the unicortical group (668 (SD 298) N/mm), (P = 0.012). Similarly, the headless compression group (604 (SD 148) N/mm) had significantly greater medial-lateral stiffness than the unicortical group (281 (SD 152) N/mm), (P < 0.001). The force at 2 mm of lateral displacement was significantly greater in the headless compression group (955 (SD 79) N) compared to the unicortical group (679 (SD 198) N), (P = 0.003). At 2 mm of distal displacement, the mean force was higher in the headless compression group (1037 (SD 122) N) compared to the unicortical group (729 (SD 229) N), but the difference was not significant (P = 0.131). INTERPRETATION: A headless compression screw construct was significantly stiffer in both the proximal-distal and medial-lateral directions, indicating greater resistance to both axial and shear loading. Additionally, they had significantly greater load at clinical failure based on lateral displacement. The low-profile design of the headless compression screw minimizes soft tissue irritation and reduces need for implant removal.
    [Abstract] [Full Text] [Related] [New Search]