These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of volatile organic compounds and the impacts on the regional ozone at an international airport. Author: Yang X, Cheng S, Wang G, Xu R, Wang X, Zhang H, Chen G. Journal: Environ Pollut; 2018 Jul; 238():491-499. PubMed ID: 29604562. Abstract: In this study, the measurement of volatile organic compounds (VOCs) was conducted at Beijing Capital International Airport (ZBAA) and a background reference site in four seasons of 2015. Total concentrations of VOCs were 72.6 ± 9.7, 65.5 ± 8.7, 95.8 ± 11.0, and 79.2 ± 10.8 μg/m3 in winter, spring, summer, and autumn, respectively. The most abundant specie was toluene (10.1%-17.4%), followed by benzene, ethane, isopentane, ethane, acetylene, and n-butane. Seasonal variations of VOCs were analyzed, and it was found that the highest concentration occurring in summer, while the lowest in spring. For the diurnal variation, the concentration of VOCs in the daytime (9:00-15:00) was less than that at night (15:00-21:00) obviously. Ozone Formation Potential (OFP) was calculated by using Maximum Incremental Reactivity (MIR) method. The greatest contribution to OFP from alkenes and aromatics, which accounted for 27.3%-51.2% and 36.6%-58.6% of the total OFP. The WRF-CMAQ model was used to simulate the impact of airport emissions on the surrounding area. The results indicated that the maximum impact of VOCs emissions and all sources emissions at the airport on O3 was 0.035 and -23.8 μg/m3, respectively. Meanwhile, within 1 km from the airport, the concentration of O3 around the airport was greatly affected by airport emitted.[Abstract] [Full Text] [Related] [New Search]