These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibitory effect of sinigrin on adipocyte differentiation in 3T3-L1 cells: Involvement of AMPK and MAPK pathways.
    Author: Lee HW, Rhee DK, Kim BO, Pyo S.
    Journal: Biomed Pharmacother; 2018 Jun; 102():670-680. PubMed ID: 29604586.
    Abstract:
    Adipocyte differentiation is a critical adaptive response to nutritional overload and affects the metabolic outcome of obesity. Sinigrin (2-propenyl glucosinolate) is a glucosinolate belong to the glucoside contained in broccoli, brussels sprouts, and black mustard seeds. We investigated the effects of sinigrin on adipogenesis in 3T3-L1 preadipocytes and its underlying mechanisms. Sinigrin remarkably inhibited the accumulation of lipid droplets and adipogenesis by downregulating the expression of CCAAT-enhancer-binding protein α (C/EBPα), peroxisome proliferator-activated receptor gamma (PPARγ), leptin and aP2. Sinigrin arrested cells in the G0/G1 phase of the cell cycle and increased the expression of p21 and p27. CDK2 expression was suppressed by sinigirn in MDI-induced adipocytes. Sinigrin increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK) and acetyl-CoA carboxylase (ACC) in the early stage of adipocyte differentiation, suggesting that sinigrin has anti-adipogenic effects through AMPK, MAPK and ACC activation. Sinigrin also inhibited the production of pro-inflammatory cytokines including tumor necrosis factor -alpha (TNF-α) and interleukin (IL)-6, IL-1β and IL-18. Taken together, these data suggest that sinigrin inhibits early-stage adipogenesis of 3T3-L1 adipocytes through the AMPK and MAPK signaling pathways.
    [Abstract] [Full Text] [Related] [New Search]