These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fluoride induces apoptosis via inhibiting SIRT1 activity to activate mitochondrial p53 pathway in human neuroblastoma SH-SY5Y cells. Author: Tu W, Zhang Q, Liu Y, Han L, Wang Q, Chen P, Zhang S, Wang A, Zhou X. Journal: Toxicol Appl Pharmacol; 2018 May 15; 347():60-69. PubMed ID: 29609003. Abstract: There has been a great concern about the neurotoxicity of fluoride since it can pass through the blood-brain barrier and accumulate in the brain. It has been suggested that apoptosis plays a vital role in neurotoxicity of fluoride. However, whether p53-mediated apoptotic pathway is involved is still unclear. Our results showed that apoptosis was induced after treatment with 40 and 60 mg/L of NaF for 24 h in human neuroblastoma SH-SY5Y cells. Exposure to 60 mg/L of NaF for 24 h significantly upregulated the levels of p53 and apoptosis-related proteins including PUMA, cytochrome c (cyto c), cleaved caspase-3 and cleaved PARP, whereas downregulated Bcl-2 in SH-SY5Y cells. Meanwhile, fluoride increased p53 nuclear translocation, cyto c release from mitochondria to cytoplasm and mitochondrial translocation of Bax in SH-SY5Y cells. Fluoride-induced increases of apoptotic rates and apoptosis-related protein levels were significantly attenuated by inhibiting p53 transcriptional activity with pifithrin-α. In addition, fluoride inhibited the deacetylase activity of SIRT1 and increased p53 (acetyl K382) level in SH-SY5Y cells. Apoptosis and upregulation of cleaved caspase-3, cleaved PARP and p53 (acetyl K382) induced by fluoride could be ameliorated by SIRT1 overexpression or its activator resveratrol in SH-SY5Y cells. Taken together, our study demonstrates that fluoride induces apoptosis by inhibiting the deacetylase activity of SIRT1 to activate mitochondrial p53 pathway in SH-SY5Y cells, which depends on p53 transcriptional activity. Thus, SIRT1 may be a promising target to protect against neurotoxicity induced by fluoride.[Abstract] [Full Text] [Related] [New Search]