These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nitrate reduction pathways in the presence of excess nitrogen in a shallow eutrophic estuary.
    Author: Domangue RJ, Mortazavi B.
    Journal: Environ Pollut; 2018 Jul; 238():599-606. PubMed ID: 29609171.
    Abstract:
    The eutrophication of estuaries results from increasing anthropogenic nutrient inputs to coastal waters. Ecosystem recovery from eutrophication is partly dependent on the ability of a system to assimilate or remove nutrients, and denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are important pathways for nitrogen (N) removal or retention. We measured rates of denitrification and DNRA over an annual cycle at two stations in Weeks Bay, AL, a shallow microtidal estuary receiving freshwater from two rivers with agricultural watersheds and high N inputs. We hypothesized that rates of DNRA would exceed denitrification in the sulfidogenic sediments in this estuary. Consistent with our hypothesis, we found that DNRA (44.4 ± 5.5 μmol N m-2 hr-1) exceeded in situ denitrification (0.9 ± 2.3 μmol N m-2 hr-1) and that even in the presence of abundant water column nitrate DNRA was favored over denitrification by a factor of two. DNRA is estimated to provide N to the water column at a rate equivalent to 15% of the N input that is retained within the estuary and is a significant component of the N budget in this highly impacted estuary. DNRA by retaining N in the system contributes to the N demand by primary producers and can impact this estuary through enhanced rates of primary production. Weeks Bay, like many coastal estuaries, experiences periods of hypoxia, blooms of harmful algae and fish kills. Future management efforts should focus on reducing nutrient input to this estuary without which the significant retention of N in this system through DRNA will contribute to the undesirable ecosystem attributes associated with eutrophication.
    [Abstract] [Full Text] [Related] [New Search]