These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vitro and in vivo effects of chitosan-praziquantel and chitosan-albendazole nanoparticles on Echinococcus granulosus Metacestodes.
    Author: Torabi N, Dobakhti F, Faghihzadeh S, Haniloo A.
    Journal: Parasitol Res; 2018 Jul; 117(7):2015-2023. PubMed ID: 29616349.
    Abstract:
    Cystic echinococcosis (CE), which is caused by the metacestode of Echinococcus granulosus, is one of the most important zoonoses affecting humans. Benzimidazoles (in particular albendazole) and praziquantel (PZQ) are effective against CE, but poor water solubility of these agents often leads to inadequate results. Here, we evaluate the effects of chitosan-albendazole (ChABZ) and chitosan-praziquantel (ChPZQ) nanoparticles as a new formulation on hydatid cysts both in vitro and in vivo. Developed microcysts in culture were treated with different concentrations of ChABZ and ChPZQ nanoparticles (either alone or in combination), and ABZ + PZQ suspension. The viability rate of microcysts was used to evaluate the drug efficacies. In addition, the prophylactic and therapeutic effects of the drugs were studied on infected DBA/2 mice. Transmission electron microscopy was used to observe the ultra-structural changes. The viability rate of microcysts and differences in cyst weights were compared by ANOVA, and the cyst numbers were compared using the Kruskal-Wallis test. The combination of ChABZ + ChPZQ nanoparticles was more effective than the ABZ + PZQ suspension in vitro (p < 0.05). In prophylaxy, a significant reduction was observed both in size and in number of the cysts in ChABZ + ChPZQ nanoparticle groups compared with the control group (p < 0.05). In the therapeutic stage, however, this treatment only reduced the cyst numbers. Degeneration of the microcysts treated with the drugs was evident in the ultra-structural imaging. Overall, the nanoparticulate drugs were more effective than their suspension counterparts, but further studies are recommended to evaluate the full potential of these nanoparticles in the treatment of human CE.
    [Abstract] [Full Text] [Related] [New Search]