These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Poligoni Multiflori Radix enhances osteoblast formation and reduces osteoclast differentiation.
    Author: Han SY, Lee KH, Kim YK.
    Journal: Int J Mol Med; 2018 Jul; 42(1):331-345. PubMed ID: 29620250.
    Abstract:
    Poligoni Multiflori Radix (PMR) is a traditional Korean medicinal herb that is known to have various pharmacological effects, including antihyperlipidemic, anticancer, and anti‑inflammatory effects. However, the effects of PMR on bone metabolism have not been elucidated to date. The present study aimed to investigate the in vitro and in vivo effect of PMR water extract on the regulation of osteoblast and osteoclast activity. Effects of PMR water extract on receptor activator of nuclear factor‑kB ligand (RANKL)‑induced osteoclast differentiation and survival of mouse bone marrow macrophages (BMMs) obtained from femurs were investigated by tartrate‑acid resistant acid phosphatase (TRAP)‑positive cells and XTT assay. Expression of osteoclast‑related genes was assayed by western blot analysis and reverse transcription‑quantitative polymerase chain reaction. Additionally, the effects of PMR water extract on osteoblastic proliferation and differentiation were investigated by alkaline phosphatase (ALP) activity assay, alizarin red staining, and levels of mRNA encoding known osteoblast markers. Furthermore, the effects of PMR water extract on lipopolysaccharide (LPS)‑induced bone loss were examined in a mouse model. PMR inhibited RANKL‑induced osteoclast differentiation of BMMs in a dose‑dependent manner without significant cytotoxicity, and suppressed expression of the main osteoclast differentiation markers Fos proto‑oncogene and nuclear factor of activated T‑cell. In addition, PMR decreased the mRNA expression levels of NFATc1 target genes, including TRAP, osteoclast‑associated receptor, ATPase H+ transporting, lysosomal 38 kDa V0 subunit d2, and Cathepsin K. These inhibitory effects were mediated by the p38 and extracellular signal‑regulated kinase/nuclear factor‑κB pathway. Simultaneously, PMR enhanced the differentiation of primary osteoblasts, and increased the mRNA expression of runt‑related transcription factor 2, ALP, osterix, and osteocalcin. Notably, PMR improved LPS‑induced trabecular bone loss in mice. Collectively, the present findings demonstrated that PMR may regulate bone remodeling by reducing osteoclast differentiation and stimulating osteoblast formation. These results suggest that PMR may be used for the treatment of bone diseases, such as osteoporosis and rheumatoid arthritis.
    [Abstract] [Full Text] [Related] [New Search]