These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Gray Matter Volume Changes over the Whole Brain in the Bulbar- and Spinal-onset Amyotrophic Lateral Sclerosis: a Voxel-based Morphometry Study. Author: Chen ZY, Liu MQ, Ma L. Journal: Chin Med Sci J; 2018 Mar 30; 33(1):20-28. PubMed ID: 29620511. Abstract: Objective To investigate cerebral structural signatures of the bulbar- and spinal-onset amyotrophic lateral sclerosis (ALS) using voxel-based morphometry on magnetic resonance imaging. Methods The MR structural images of the brain were obtained from 65 ALS patients (15 bulbar-onset, 50 spinal-onset) and 65 normal controls (NC) on a 3.0T MRI system. Gray matter (GM) volume changes were investigated by voxel-based morphometry, and the distribution of the brain regions with volume changes was compared between ALS and normal controls, as well as between bulbar-onset and spinal-onset ALS based on Neuromorphometrics atlas. Result On voxel-level the decreased volume of brain regions in ALS patients was located in the right precentral gyrus (rPrcGy) and right middle frontal gyrus compared with that in NC. The bulbar-onset ALS presented extra-motor cortex atrophy (fronto-temporal pattern), including left medial orbital gyrus, left inferior temporal gyrus and right middle temporal gyrus; the spinal-onset ALS suffered from motor cortex atrophy (rPrcGy dominance) and extra-motor cortex atrophy (fronto-temporal and extra-fronto-temporal pattern) compared with NC. The spinal-onset ALS featured by GM volume loss of left postcentral gyrus and bulbar-onset ALS featured by GM volume loss of left middle temporal gyrus compared with each other. Conclusions The asymmetric GM atrophy of the motor cortex and extra-motor cortex represents the common MRI structural signatures of spinal-onset ALS, and sole extra-motor cortex atrophy represents the structural signatures of bulbar-onset ALS. The present study also demonstrated that the pattern of GM damage is likely to distribute wider in spinal-onset ALS than in bulbar-onset ALS.[Abstract] [Full Text] [Related] [New Search]