These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biochemical effects of the antidepressant paroxetine, a specific 5-hydroxytryptamine uptake inhibitor.
    Author: Thomas DR, Nelson DR, Johnson AM.
    Journal: Psychopharmacology (Berl); 1987; 93(2):193-200. PubMed ID: 2962217.
    Abstract:
    Paroxetine was shown to be a potent (Ki = 1.1 nM) and specific inhibitor of [3H]-5-hydroxytryptamine (5-HT) uptake into rat cortical and hypothalamic synaptosomes in vitro. Lineweaver-Burk kinetic analysis determined that this inhibition was competitive in nature, implying a direct interaction with the 5-HT uptake transporter complex. Oral administration of paroxetine produced a dose-related inhibition of [3H]-5-HT uptake (ED50 = 1.9 mg/kg) into rat hypothalamic synaptosomes ex vivo with little effect on [3H]-l-noradrenaline (NA) uptake (ED50 greater than 30 mg/kg). This selectivity for 5-HT uptake was maintained after oral dosing for 14 days. Paroxetine (ED50 1-3 mg/kg PO) prevented the 5-HT depleting effect of p-chloroamphetamine (PCA) in rat brain, demonstrating 5-HT uptake blockade in vivo. Radioligand binding techniques in rat brain in vitro showed that paroxetine has little affinity for alpha 1, alpha 2 or beta adrenoceptors, dopamine (D2), 5-HT1, 5-HT2 or histamine (H1) receptors at concentrations below 1000 nM. Paroxetine demonstrated weak affinity for muscarinic receptors (Ki = 89 nM) but was at least 15 fold weaker than amitriptyline (Ki = 5.1 nM). Paroxetine, therefore, provides a useful pharmacological tool for investigating 5-HT systems and furthermore should be an antidepressant with reduced tricyclic-like side-effects.
    [Abstract] [Full Text] [Related] [New Search]