These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vivo kinematics of gait in posterior-stabilized and bicruciate-stabilized total knee arthroplasties using image-matching techniques. Author: Murakami K, Hamai S, Okazaki K, Wang Y, Ikebe S, Higaki H, Shimoto T, Mizu-Uchi H, Akasaki Y, Nakashima Y. Journal: Int Orthop; 2018 Nov; 42(11):2573-2581. PubMed ID: 29623458. Abstract: PURPOSE: This study aimed to evaluate the effects of two types of total knee arthroplasty (TKA) designs: posterior-stabilized (PS) and bicruciate-stabilized (BCS) on in vivo kinematics during gait. METHODS: Continuous X-ray images of the gait were taken using a flat panel detector for 23 PS and BCS TKAs. We analyzed the tibiofemoral implant flexion angle, anteroposterior (AP) translation, axial rotation, and anterior/posterior cam-post contact using image-matching techniques. RESULTS: Double knee actions were demonstrated for the PS and BCS design (35 and 61%, respectively, p = 0.08). The tibiofemoral AP positions were significantly more posterior at peak extension (- 1.7 ± 2.2 and 1.0 ± 2.5 mm, respectively, p < 0.01) and anterior at peak flexion (1.3 ± 2.3 and - 0.8 ± 2.8 mm, respectively, p = 0.01) for the PS design than for the BCS design, with a significant difference in AP translation (3.0 ± 3.9 mm anterior and 1.7 ± 2.8 mm posterior, respectively, p < 0.01). Anterior/posterior tibial post contacts were found in 83/4% and 74/30% for the PS and BCS designs, respectively, with a significant difference in posterior contact (p = 0.72/0.04, respectively). CONCLUSION: The knee flexion pattern, tibiofemoral AP translation, axial rotation, and cam-post contact during gait varied, depending on the type of implant, the PS and BCS designs.[Abstract] [Full Text] [Related] [New Search]