These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Memantine treatment of juvenile rats with kaolin-induced hydrocephalus. Author: Di Curzio DL, Nagra G, Mao X, Del Bigio MR. Journal: Brain Res; 2018 Jun 15; 1689():54-62. PubMed ID: 29625114. Abstract: Memantine is a selective, non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist that has previously been shown to have neuroprotective qualities in some animal models of neurologic disease. We hypothesized that memantine therapy would improve behavioral, neuropathological, and/or biochemical outcomes in juvenile rats with kaolin-induced hydrocephalus. Three-week old rats received an injection of kaolin (aluminum silicate) into the cisterna magna. Magnetic resonance imaging was performed one week later to assess ventricle size and stratify rats to three treatment groups. Rats were blindly treated daily for three weeks with saline or 10 or 30 mg/kg/day memantine. Behavior measures were performed weekly. Histologic and biochemical evaluations were performed at termination. Hydrocephalic rats showed no differences in weight among treatment groups. Memantine treatment stabilized ventricular enlargement in both low and high dose groups. The high dose group exhibited increased motor activity in open field chambers compared to the vehicle-treated group. However, there were no significant differences between the three hydrocephalic treatment groups for other behavioral tasks. Ventriculomegaly was associated with periventricular white matter damage. Glial fibrillary acidic protein (GFAP) content was higher in the low dose memantine group compared to vehicle-treated group, but there were no differences in GFAP-immunoreactive astrocytes or Iba-1- immunoreactive microglia between groups. Memantine therapy stabilized ventricular expansion and improved some behavioral measures but did not reduce brain tissue changes in juvenile rats with kaolin-induced hydrocephalus.[Abstract] [Full Text] [Related] [New Search]