These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expression of Saccharomyces cerevisiae cDNAs to enhance the growth of non-ethanol-producing S. cerevisiae strains lacking pyruvate decarboxylases.
    Author: Narazaki Y, Nomura Y, Morita K, Shimizu H, Matsuda F.
    Journal: J Biosci Bioeng; 2018 Sep; 126(3):317-321. PubMed ID: 29636254.
    Abstract:
    Metabolic engineering of Saccharomyces cerevisiae often requires a restriction on the ethanol biosynthesis pathway. The non-ethanol-producing strains, however, are slow growers. In this study, a cDNA library constructed from S. cerevisiae was used to improve the slow growth of non-ethanol-producing S. cerevisiae strains lacking all pyruvate decarboxylase enzymes (Pdc-, YSM021). Among the obtained 120 constructs expressing cDNAs, 34 transformants showed a stable phenotype with quicker growth. Sequence analysis showed that the open reading frames of PDC1, DUG1 (Cys-Gly metallo-di-peptidase in the glutathione degradation pathway), and TEF1 (translational elongation factor EF-1 alpha) genes were inserted into the plasmids of 32, 1, and 1 engineered strains, respectively. DUG1 function was confirmed by the construction of YSM021 pGK416-DUG1 strain because the specific growth rate of YSM021 pGK416-DUG1 (0.032 ± 0.0005 h-1) was significantly higher than that of the control strains (0.029 ± 0.0008 h-1). This suggested that cysteine supplied from glutathione was probably used for cell growth and for construction of Fe-S clusters. The results showed that the overexpression of cDNAs is a promising approach to engineer S. cerevisiae metabolism.
    [Abstract] [Full Text] [Related] [New Search]