These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of High-Fat Diet on Immature Female Mice and Messenger and Noncoding RNA Expression Profiling in Ovary and White Adipose Tissue. Author: Huang BB, Liu XC, Qin XY, Chen J, Ren PG, Deng WF, Zhang J. Journal: Reprod Sci; 2019 Oct; 26(10):1360-1372. PubMed ID: 29642802. Abstract: Obesity is a chronic multifactorial disease prevalent in many areas of the world and is a major cause of morbidity and mortality. In women, obesity increases the risks of both metabolic and reproductive diseases, such as diabetes and infertility. The mechanisms underlying these effects, especially in young women, are largely unknown. To explore these mechanisms, we established a high-fat diet (HFD) model of obesity in immature female mice. Microarray analysis of gene expression in ovaries and white adipose tissue identified a large number of differentially expressed genes (>1.3-fold change) in both tissues. In ovaries of the HFD group, there were 208 differentially expressed messenger RNAs (mRNAs), including 98 upregulated and 110 downregulated, and 295 differentially expressed lncRNAs (long non coding RNAs), including 63 upregulated and 232 downregulated. In white adipose tissue, there were 625 differentially expressed mRNAs, including 220 upregulated and 605 downregulated in the HFD group, and 1595 differentially expressed lncRNAs, including 1320 and 275 downregulated in the HFD group. Our results reveal significant differences between the transcriptomes of the HFD and control groups in both ovaries and white adipose tissue that provide clues to the molecular mechanisms of diet-induced female reproductive dysfunction and metabolic disorders, as well as biomarkers of risk for these disorders.[Abstract] [Full Text] [Related] [New Search]