These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interference of carbidopa and other catechols with reactions catalyzed by peroxidases. Author: Gąsowska-Bajger B, Nishigaya Y, Hirsz-Wiktorzak K, Rybczyńska A, Yamazaki T, Wojtasek H. Journal: Biochim Biophys Acta Gen Subj; 2018 Jul; 1862(7):1626-1634. PubMed ID: 29649511. Abstract: BACKGROUND: A number of compounds, including ascorbic acid, catecholamines, flavonoids, p-diphenols and hydrazine derivatives have been reported to interfere with peroxidase-based medical diagnostic tests (Trinder reaction) but the mechanisms of these effects have not been fully elucidated. METHODS: Reactions of bovine myeloperoxidase with o-dianisidine, bovine lactoperoxidase with ABTS and horseradish peroxidase with 4-aminoantipyrine/phenol in the presence of carbidopa, an anti-Parkinsonian drug, and other catechols, including l-dopa, were monitored spectrophotometrically and by measuring hydrogen peroxide consumption. RESULTS: Chromophore formation in all three enzyme/substrate systems was blocked in the presence of carbidopa and other catechols. However, the rates of hydrogen peroxide consumption were not much affected. Irreversible enzyme inhibition was also insignificant. CONCLUSIONS: Tested compounds reduced the oxidation products or intermediates of model substrates thus preventing chromophore formation. This interference may affect interpretation of results of diagnostic tests in samples from patients with Parkinson's disease treated with carbidopa and l-dopa. GENERAL SIGNIFICANCE: This mechanism allows prediction of interference in peroxidase-based diagnostic tests for other compounds, including drugs and natural products.[Abstract] [Full Text] [Related] [New Search]