These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel high affinity class of Ca2+ channel blockers.
    Author: Qar J, Barhanin J, Romey G, Henning R, Lerch U, Oekonomopulos R, Urbach H, Lazdunski M.
    Journal: Mol Pharmacol; 1988 Apr; 33(4):363-9. PubMed ID: 2965787.
    Abstract:
    Benzolactams (HOE 166 and analogs) form a new class of molecules acting on the 1,4-dihydropyridine-sensitive L-type Ca2+ channels. The main binding properties of HOE 166 and analogs to rabbit skeletal muscle membranes are as follows. (i) The compounds have a specific binding site to which they associate with a high affinity (0.25 nM for HOE 166). (ii) Unlabeled HOE 166 and analogs completely inhibit 1,4-dihydropyridine binding [(+)-[3H]PN 200-110] in a competitive way. (iii) Affinity values measured for HOE 166 inhibition of (+)-[3H]PN 200-110 (K0.5 = 0.25 nM and K1 = 0.55 nM) and of [3H]HOE 166 binding (K0.5 = 0.5 nM) are in good agreement. They also fit with results from direct binding experiments with tritiated HOE 166 (Kd = 0.27 nM) and from kinetic experiments (Kd = 0.39 nM). (iv) HOE 166 completely inhibits the specific binding of other classes of Ca2+ channel antagonists such as phenylalkylamines [(-)[3H] desmethoxyverapamil], benzothiazepines (d-cis-[3H]diltiazem), diphenylbutylpiperidines ([3H]fluspirilene), and [3H]bepridil. In all these cases the binding inhibition is of a noncompetitive nature. (v) The maximum binding capacity for [3H]HOE 166 binding to transverse tubule membranes, 65 pmol/mg of protein, is the same as that found for other classes of Ca2+ channel antagonists. 45Ca2+ uptake experiments performed with the rat aortic cell line A7r5 and the insulin-secreting cell line RINm5F demonstrate that HOE 166 and analogs fully inhibit the 1,4-dihydropyridine-sensitive 45Ca2+ influx elicited by depolarization. There is a good correlation between inhibitory potencies of compounds in the HOE 166 series measured on (+)-[3H]PN 200-110 binding to A7r5 membranes and on the activity of Ca2+ channels followed by 45Ca2+ fluxes with the same cells. Structure-function relationships of HOE 166 and analogs for Ca2+ channel blockade in A7r5 and RINm5F cells were also in good correlation. Finally, voltage-clamp experiments confirmed that voltage-dependent L-type Ca2+ channels are completely blocked by 100 nM HOE 166 even at a membrane potential held at -80 mV.
    [Abstract] [Full Text] [Related] [New Search]