These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Guanine nucleotide regulation of [125I]beta-endorphin binding to rat brain membranes: monovalent cation requirement. Author: Selley DE, Tyler CB, Bidlack JM. Journal: J Neurochem; 1988 Jun; 50(6):1844-50. PubMed ID: 2967350. Abstract: The binding of [125I]beta h-endorphin to rat brain membranes was investigated in the presence of GTP and guanylyl-5'-imidodiphosphate. In contrast to the binding of the mu-selective opioid agonist, [3H][D-Ala2,MePhe4,Glyol5]enkephalin, and the delta-selective opioid agonist, [3H][D-penicillamine2, D-penicillamine5]enkephalin, [125I]beta h-endorphin binding was not affected by GTP or guanylyl-5'-imidodiphosphate in a concentration-dependent manner in the absence of cations. However, in the presence of NaCl, the inclusion of either GTP or guanylyl-5'-imidodiphosphate resulted in a concentration-dependent inhibition of [125I]beta h-endorphin binding. This inhibition was significantly greater than the decrease in [125I]beta h-endorphin binding observed in the presence of sodium alone. Although GTP most potently inhibited [125I]beta h-endorphin binding in the presence of sodium, inhibition of [125I]beta h-endorphin binding by GTP was also observed in the presence of the monovalent cations lithium and potassium, but not the divalent cations magnesium, calcium, or manganese. The effect produced by GTP in the presence of NaCl was mimicked by GDP, but not by GMP or other nucleotides. Unlike [125I]beta h-endorphin, the binding of the putative sigma receptor agonist, (+)-[3H]SKF 10,047, was not significantly altered by GTP or guanylyl-5'-imidodiphosphate in the absence or presence of sodium.[Abstract] [Full Text] [Related] [New Search]