These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Developmental plasticity in reptiles: Insights into thermal and maternal effects on chameleon phenotypes.
    Author: Andrews RM.
    Journal: J Exp Zool A Ecol Integr Physiol; 2018 Jul; 329(6-7):298-307. PubMed ID: 29682910.
    Abstract:
    Embryonic environments affect a range of phenotypic traits including sex and reproductive success. I determined (1) how the interaction between incubation temperature and egg size affects sex allocation of Chamaeleo calyptratus and (2) how incubation temperature and maternal parent (clutch) affect water uptake by eggs and body size, growth, and climbing speed of hatchlings and juveniles. Eggs from five clutches were exposed to five temperature treatments with clutches replicated within and among treatments. Temperature affected sex, but only when egg size was included as a factor in analyses. At intermediate (28°C) temperatures, daughters were more likely to be produced from large eggs and sons more likely to be produced from small eggs, while at 25 and 30°C, the pattern of sex allocation was reversed. Temperature and clutch affected water uptake and body size. Nonetheless, the direction of temperature and clutch effects on water uptake by eggs and on the size of hatchlings were not the same and the direction of temperature effects on body sizes of hatchlings and juveniles differed as well. Clutch affected hatchling size but not juvenile size and growth rate. Clutch, but not incubation temperature, affected climbing speed, but the fastest hatchlings were not from the same clutches as the fastest juveniles. The independent effects of incubation temperature and clutch indicate that hatchling phenotypes are influenced largely by conditions experienced during incubation, while juvenile phenotypes are influenced largely by conditions experienced in the rearing environment.
    [Abstract] [Full Text] [Related] [New Search]