These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fabricating Bis(phthalocyaninato) Terbium SIM into Tetrakis(phthalocyaninato) Terbium SMM with Enhanced Performance through Sodium Coordination.
    Author: Chen Y, Liu C, Ma F, Qi D, Liu Q, Sun HL, Jiang J.
    Journal: Chemistry; 2018 Jun 07; 24(32):8066-8070. PubMed ID: 29683531.
    Abstract:
    The non-peripherally substituted 1,4,8,11,15,18,22,25-octa(butoxy)-phthalocyanine-involved unsymmetrical heteroleptic bis(phthalocyaninato) terbium double-decker, Tb(Pc){H[Pc(α-OC4 H9 )8 ]} (Pc=unsubstituted phthalocyanine) (1), was revealed to exhibit typical single ion magnet (SIM) behavior with effective energy barrier, 180 K (125 cm-1 ), and blocking temperature, 2 K, due to the severe deviation of the terbium coordination polyhedron from square-antiprismatic geometry. Fabrication of this double-decker compound into the novel tetrakis(phthalocyaninato) terbium pseudo-quadruple-decker Na2 {Tb(Pc)[Pc(α-OC4 H9 )8 ]}2 (2) single molecule magnet (SMM) not only optimizes the coordination polyhedron of terbium ion towards the square-antiprismatic geometry and intensifies the coordination field strength, but more importantly significantly enhances the molecular magnetic anisotropy in the unsymmetrical bis(phthalocyaninato) double-decker unit, along with the change of the counter cation from H+ of 1 to Na+ of 2, leading to an significantly enhanced magnetic behavior with spin-reversal energy barrier, 528 K (367 cm-1 ), and blocking temperature, 25 K. The present result is surely helpful towards developing novel tetrapyrrole lanthanide SMMs through rational design and self-assembly from bis(tetrapyrrole) lanthanide single ion magnet (SIM) building block.
    [Abstract] [Full Text] [Related] [New Search]