These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Xylanase immobilization on magnetite and magnetite core/shell nanocomposites using two different flexible alkyl length organophosphonates: Linker length and shell effect on enzyme catalytic activity. Author: Singh V, Kaul S, Singla P, Kumar V, Sandhir R, Chung JH, Garg P, Singhal NK. Journal: Int J Biol Macromol; 2018 Aug; 115():590-599. PubMed ID: 29684449. Abstract: Magnetite and magnetite core/shell (Fe3O4/SiO2) nanoparticles were synthesized and functionalized with two different alkyl chain length linkers that were 3-Phosphonopropionic acid (3-PPA) and 16-Phosphonohexadecanoic acid (16-PHDA). Xylanase (EC 3.2.1.8, endo-1,4-xylanase, endo-1), was immobilized on as synthesized bare and silica coated magnetite nanoparticles via well-known EDC coupling. Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction Spectroscopy (XRD), X-ray Photoelectron Spectroscopy (XPS), Dynamic Light Scattering (DLS) and Thermogravimetric analysis (TGA) techniques were utilized to characterize all the modifications. The flexible linker chain length plays a vital role in the catalytic attributes of the immobilized enzyme. Result shows that long chain alkyl linker grafted magnetite and magnetite core/silica shell nanoparticles exhibited a superior performance in terms of lower Km, higher catalytic efficiency and better reusability. Furthermore, the immobilized xylanase shows improved tolerability performance at a wide range of pH and temperature. Silica-coated magnetite nanoparticles bound xylanase through 16-PHDA retained 90% of its initial activity after 10 consecutive cycles, further emphasize on the beneficial effect of linker chain length and inert silica coating.[Abstract] [Full Text] [Related] [New Search]