These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Specificity and affinity of neuraminic acid exhibited by canine rotavirus strain K9 carbohydrate-binding domain (VP8*). Author: Mishra R, Yu X, Kishor C, Holloway G, Lau K, von Itzstein M, Coulson BS, Blanchard H. Journal: J Mol Recognit; 2018 Sep; 31(9):e2718. PubMed ID: 29687510. Abstract: The outer capsid spike protein VP4 of rotaviruses is a major determinant of infectivity and serotype specificity. Proteolytic cleavage of VP4 into 2 domains, VP8* and VP5*, enhances rotaviral infectivity. Interactions between the VP4 carbohydrate-binding domain (VP8*) and cell surface glycoconjugates facilitate initial virus-cell attachment and subsequent cell entry. Our saturation transfer difference nuclear magnetic resonance (STD NMR) and isothermal titration calorimetry (ITC) studies demonstrated that VP8*64-224 of canine rotavirus strain K9 interacts with N-acetylneuraminic and N-glycolylneuraminic acid derivatives, exhibiting comparable binding epitopes to VP8* from other neuraminidase-sensitive animal rotaviruses from pigs (CRW-8), cattle (bovine Nebraska calf diarrhoea virus, NCDV), and Rhesus monkeys (Simian rhesus rotavirus, RRV). Importantly, evidence was obtained for a preference by K9 rotavirus for the N-glycolyl- over the N-acetylneuraminic acid derivative. This indicates that a VP4 serotype 5A rotavirus (such as K9) can exhibit a neuraminic acid receptor preference that differs from that of a serotype 5B rotavirus (such as RRV) and the receptor preference of rotaviruses can vary within a particular VP4 genotype.[Abstract] [Full Text] [Related] [New Search]