These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Development, Characterization, and In Vitro Testing of Co-Delivered Antimicrobial Dry Powder Formulation for the Treatment of Pseudomonas aeruginosa Biofilms. Author: Bahamondez-Canas TF, Ferrati S, Moraga-Espinoza DF, Smyth HDC. Journal: J Pharm Sci; 2018 Aug; 107(8):2172-2178. PubMed ID: 29698726. Abstract: Pseudomonas aeruginosa is an opportunistic bacteria responsible for recurrent lung infections. Previously, we demonstrated that certain materials improved the activity of tobramycin (Tob) against P. aeruginosa biofilms in vitro. We aimed to develop prototype dry powder formulations comprising Tob and a mixture of excipients and test its aerodynamic properties and antimicrobial activity. First, we evaluated different combinations of excipients with Tob in solution against P. aeruginosa biofilms. We selected the compositions with the highest activity, to prepare dry powders by spray drying. The powders were characterized by morphology, bulk density, water content, and particle size distributions. Finally, the antimicrobial activity of the powders was tested. The combinations of Tob (64 μg/mL) with l-alanine and l-proline (at 10 and 20 mM; formulations 1 and 2, respectively) and with l-alanine and succinic acid (at 20 mM; formulation 3) showed the highest efficacies in vitro and were prepared as dry powders. Formulation 1 had the best aerodynamic performance as indicated by the fine particle fraction and the best in vitro activity against P. aeruginosa biofilms. Formulation 3 represents a good candidate for further optimization because it demonstrated good dispersibility potential and optimization of the particle size distribution may achieve high delivery efficiencies.[Abstract] [Full Text] [Related] [New Search]