These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chemoreception of botanical nematicides by Meloidogyne incognita and Caenorhabditis elegans. Author: Sobkowiak R, Bojarska N, Krzyżaniak E, Wągiel K, Ntalli N. Journal: J Environ Sci Health B; 2018 Aug 03; 53(8):493-502. PubMed ID: 29708833. Abstract: Plant-parasitic nematodes, such as Meloidogyne incognita, cause serious damage to various agricultural crops worldwide, and their control necessitates environmentally safe measures. We have studied the effects of plant secondary metabolites on M. incognita locomotion, as it is an important factor affecting host inoculation inside the soil. We compared the effects to the respective behavioral responses of the model saprophytic nematode Caenorhabditis elegans. The tested botanical nematicides, all reported to be active against Meloidogyne sp. in our previous works, are small molecular weight molecules (acids, alcohols, aldehydes, and ketones). Here, we specifically report on the attractant or repellent properties of trans-anethole, (E,E)-2,4-decadienal, (E)-2-decenal, fosthiazate, and 2-undecanone. The treatments for both nematode species were made at sublethal concentration levels, namely, 1 mM (<EC50), and the chemical controls used for the experiments were the commercial nematicides fosthiazate and oxamyl. According to our results, trans-anethole, decenal, and oxamyl attract C. elegans, while 2-undecanone strongly attracts M. incognita. These findings can be of use in the development of nematicidal formulations, contributing to the disruption of nematode chemotaxis to root systems.[Abstract] [Full Text] [Related] [New Search]