These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cistanche deserticola polysaccharides protects PC12 cells against OGD/RP-induced injury.
    Author: Liu Y, Wang H, Yang M, Liu N, Zhao Y, Qi X, Niu Y, Sun T, Li Y, Yu J.
    Journal: Biomed Pharmacother; 2018 Mar; 99():671-680. PubMed ID: 29710464.
    Abstract:
    Ischemia stroke is a disease with high morbidity and mortality. Cistanche deserticola polysaccharides (CDP) possess a wide range of beneficial effects, including hepatoprotection and immune homeostasis. As far as we know, the protective effect of CDP on neurons injured by oxygen-glucose deprivation/reperfusion (OGD/RP) has not been investigated. In this study, OGD/RP injured a PC12 cell model. Briefly, CDP (0.05, 0.5 and 5??g/ml) was administered before reperfusion. The protective effect of CDP was then evaluated on the basis of cell viability, lactate dehydrogenase (LDH) leakage, [Ca2+]i, mitochondrial membrane potential (MMP)and cell apoptosis, and redox status after reperfusion was evaluated by assaying reactive oxygen species (ROS), catalase (CAT), glutathione peroxidase (GSH-Px) and total antioxidant capacity. Basing on the fact that Parkinson's disease-associated protein DJ-1 participates in endogenous antioxidation and performs neuroprotective effects after ischemia stroke, we investigated the interaction between CDP and DJ-1. DJ-1 expression was detected through ELISA and Western blot analysis, and the translocation of DJ-1 was evaluated through immunofluorescence. Result showed that CDP (0.05, 0.5 and 5??g/ml) attenuated PC12 cell death, preserved MMP and calcium homeostasis; inhibited oxidative stress and decreased cell apoptosis. Moreover, CDP (5??g/ml) markedly stimulated DJ-1 secretion and expression. Overall, the results suggested that CDP exerts neuroprotective effect against OGD/RP-induced injury by inhibiting oxidative stress and regulating the DJ-1 pathway.
    [Abstract] [Full Text] [Related] [New Search]