These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antiproliferative Activity of Extracts of Campomanesia adamantium (Cambess.) O. Berg and Isolated Compound Dimethylchalcone Against B16-F10 Murine Melanoma. Author: Lima E Silva MCB, Bogo D, Alexandrino CAF, Perdomo RT, Figueiredo PO, do Prado PR, Garcez FR, Kadri MCT, Ximenes TVN, Guimarães RCA, Sarmento UC, Macedo MLR. Journal: J Med Food; 2018 Oct; 21(10):1024-1034. PubMed ID: 29715052. Abstract: Campomanesia adamantium, a native species of the Brazilian Cerrado, is characterized as a natural source of phenolic compounds and has known potential anticancer activities. This study aimed to evaluate the chemical profile of dichloromethane extracts of pulp (DEGPU) and peel (DEGPE) from the fruits of C. adamantium and to identify compounds with antiproliferative effects in vitro against melanoma cells by sulforhodamine B (SRB) assay, apoptosis induction assay, caspase-3 activation assay, nitric oxide (NO) release in coculture of B16-F10 cells and murine peritoneal macrophages. The chemical profiles of DEGPU and DEGPE were analyzed by high performance liquid chromatography coupled to diode array detector and mass spectrometer using the electrospray ionization interface (HPLC-DAD-ESI-MS/MS). Thirteen compounds were identified in both extracts and the chromatographic study of the most active extract in SRB assay DEGPU (GI50 of 16.17 μg/mL) resulted in the isolation of seven compounds. The isolated compound dimethylchalcone (DMC) had the highest antiproliferative activity against B16-F10 with a GI50 of 7.11 μg/mL. DEGPU extract activated caspase-3 in 29% of cells at 25 μg/mL and caused a 50% decrease in NO release in coculture. DEGPU can be characterized as a source of bioactive compounds such as DMC, as seen from its antiproliferative effect in vitro by inducing B16-F10 cells to undergo apoptosis, essential feature in the search for new anticancer drugs.[Abstract] [Full Text] [Related] [New Search]