These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 3D Culture Represents Apoptosis Induced by Trastuzumab Better than 2D Monolayer Culture.
    Author: Tatara T, Mukohara T, Tanaka R, Shimono Y, Funakoshi Y, Imamura Y, Toyoda M, Kiyota N, Hirai M, Kakeji Y, Minami H.
    Journal: Anticancer Res; 2018 May; 38(5):2831-2839. PubMed ID: 29715106.
    Abstract:
    BACKGROUND: Our hypothesis was that three-dimensional (3D) culture better represents differential in vivo responses to trastuzumab between PIK3CA-wild-type (wt) and mutant (mt) cell lines than does two-dimensional (2D) culture. MATERIALS AND METHODS: Apoptosis and cell signaling proteins were evaluated in response to trastuzumab with and without BKM120, a pan-phosphatidylinositol 3-kinase (PI3K) inhibitor, using western blot analysis of four breast cancer cell lines with human epidermal growth factor receptor 2 (HER2) amplification. RESULTS: Increased expression of cleaved poly (ADP-ribose) polymerase (PARP) was observed only in 3D-cultured PIK3CA-wt lines in response to trastuzumab, but not in 2D-cultured PIK3CA-wt or PIK3CA-mt lines. Decrease in the ratio of phosphorylated (p-)AKT to AKT in response to trastuzumab was more profound in PIK3CA-wt cells than in PIK3CA-mt cells in 3D culture, while the difference between PIK3CA genotypes was less apparent in 2D culture. Treatment with BKM120 and trastuzumab resulted in a stronger increase in cleaved PARP than either treatment alone. CONCLUSION: 3D Culture appears to better represent trastuzumab-induced apoptosis and resistance to trastuzumab associated with PIK3CA mutation.
    [Abstract] [Full Text] [Related] [New Search]