These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electrochemiluminescence based competitive immunoassay for Sudan I by using gold-functionalized graphitic carbon nitride and Au/Cu alloy nanoflowers. Author: Chen W, Yao X, Zhou X, Zhao K, Deng A, Li J. Journal: Mikrochim Acta; 2018 May 01; 185(5):275. PubMed ID: 29717360. Abstract: A flower-like Au/Cu alloy nanocomposite (Au/Cu NFs) was synthesized and used in an electrochemiluminescence (ECL) based method for sensitive determination of the dye Sudan I. The Au-g-C3N4 nanosheets as an ECL emitter were prepared by electrostatic adsorption between gold nanoparticles and g-C3N4. They form a film on a glassy carbon electrode (GCE) and then can be connected with Sudan I antigen via gold-nitrogen bond and amidation reactions. The Au/Cu NFs combined with Sudan I antibody also via the Au-N bond and was introduced into the modified GCE by specific recognition between the antibody and the antigen. The overlap between emission spectra of the Au-g-C3N4 nanosheets and absorption spectra of Au/Cu NFs enabled the appearance of ECL resonance energy transfer process. That is, when the Sudan I analyte not present, the ECL was weakened due to absorption by the gray Au/Cu NFs on applying voltages from -1.7 V to 0 V. Conversely, the Au/Cu NFs on the GCE are reduced due to the competition for the antibody between the analyte and the antigen. A strong green ECL emission was obtained. The ECL response is linear in the 0.5 pg mL-1 to 100 ng mL-1 Sudan I concentration range, and the detection limit is 0.17 pg mL-1. Graphical abstract An Au/Cu alloy flower-like nanocomposite (Au/Cu NFs) is firstly synthesized as an acceptor to constitute an electrochemiluminescence-resonance energy transfer (ECL-RET) system for sensitive measurement of Sudan I, while Au nanoparticles (Au NPs) functionalized graphitic carbon nitride (g-C3N4) acted as a donor.[Abstract] [Full Text] [Related] [New Search]