These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures.
    Author: Song T, Cai X, Tu MW, Zhang X, Huang B, Wilson NP, Seyler KL, Zhu L, Taniguchi T, Watanabe K, McGuire MA, Cobden DH, Xiao D, Yao W, Xu X.
    Journal: Science; 2018 Jun 15; 360(6394):1214-1218. PubMed ID: 29724908.
    Abstract:
    Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here, we report multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance that is drastically enhanced with increasing CrI3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI3 Our work reveals the possibility to push magnetic information storage to the atomically thin limit and highlights CrI3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.
    [Abstract] [Full Text] [Related] [New Search]