These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Occurrence, distribution, and seasonal variation of antibiotics in an artificial water source reservoir in the Yangtze River delta, East China. Author: Cui C, Han Q, Jiang L, Ma L, Jin L, Zhang D, Lin K, Zhang T. Journal: Environ Sci Pollut Res Int; 2018 Jul; 25(20):19393-19402. PubMed ID: 29728969. Abstract: This study investigated the occurrence and variation of 11 antibiotics (including four sulfonamides (SAs), four fluoroquinolones (FQs), two tetracyclines (TCs), and one macrolide (ML)) and one SA synergist trimethoprim (TMP) in an artificial drinking water source reservoir in Yangtze River delta of East China. Water samples were collected each month from January to November in 2014 at the water inlet and outlet site of the reservoir. Sulfamethoxazole, sulfadiazine, and norfloxacin were detected with the high frequencies of 100, 92.31, and 97.85%, respectively. The total concentration showed the highest level in winter (229.14 ng/L) and the lowest one in summer (96.11 ng/L). FQs and TCs were the dominant species among all the antibiotics. The total amount of antibiotics detected in this reservoir showed a negative relationship with temperature (R2 = 0.7565) in this area. From the inlet site to outlet site of this reservoir, all SAs as well as TMP showed decline trends in the four seasons, but other antibiotics including FQs, TCs, and MLs increased more or less in different seasons, especially for ciprofloxacin in winter (from 48.82 ng/L at inlet site to 80.36 ng/L at outlet site). Most antibiotics detected in this drinking water source reservoir had no direct health risk for human with different age groups (except ciprofloxacin for the group of 0-3 months), but still showed obvious ecological risk for algae and invertebrate. Among the three target organisms (algae, invertebrate, and fish), algae was the most sensitive for antibiotics, which was followed by invertebrate. Among the target antibiotics, sulfamethoxazole, ciprofloxacin, tetracycline, and oxytetracycline showed high ecological risk for algae (RQs > 1), and oxytetracycline also showed high risk for invertebrate (RQ = 1.34).[Abstract] [Full Text] [Related] [New Search]