These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Statistical optimization of process parameters for inulinase production from Tithonia weed by Arthrobacter mysorens strain no.1.
    Author: Kamble PP, Kore MV, Patil SA, Jadhav JP, Attar YC.
    Journal: J Microbiol Methods; 2018 Jun; 149():55-66. PubMed ID: 29730324.
    Abstract:
    Tithonia rotundifolia is an easily available and abundant inulin rich weed reported to be competitive and allelopathic. This weed inulin is hydrolyzed by inulinase into fructose. Response surface methodology was employed to optimize culture conditions for the inulinase production from Arthrobacter mysorens strain no.1 isolated from rhizospheric area of Tithonia weed. Initially, Plackett- Burman design was used for screening 11 nutritional parameters for inulinase production including inulin containing weeds as cost effective substrate. The experiment shows that amongst the 11 parameters studied, K2HPO4, Inulin, Agave sisalana extract and Tithonia rotundifolia were the most significant variables for inulinase production. Quantitative effects of these 4 factors were further investigated using Box Behnken design. The medium having 0.27% K2HPO4, 2.54% Inulin, 6.57% Agave sisalana extract and 7.27% Tithonia rotundifolia extract were found to be optimum for maximum inulinase production. The optimization strategies used showed 2.12 fold increase in inulinase yield (1669.45 EU/ml) compared to non-optimized medium (787 EU/ml). Fructose produced by the action of inulinase was further confirmed by spectrophotometer, osazone, HPTLC and FTIR methods. Thus Tithonia rotundifolia can be used as an eco-friendly, economically feasible and promising alternative substrate for commercial inulinase production yielding fructose from Arthrobacter mysorens strain no.1.
    [Abstract] [Full Text] [Related] [New Search]