These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Discovery and structure-activity relationships study of thieno[2,3-b]pyridine analogues as hepatic gluconeogenesis inhibitors. Author: Ma F, Liu J, Zhou T, Lei M, Chen J, Wang X, Zhang Y, Shen X, Hu L. Journal: Eur J Med Chem; 2018 May 25; 152():307-317. PubMed ID: 29733999. Abstract: Type 2 diabetes mellitus (T2DM) is a chronic, complex and multifactorial metabolic disorder, and targeting gluconeogenesis inhibition is a promising strategy for anti-diabetic drug discovery. This study discovered a new class of thieno[2,3-b]pyridine derivatives as hepatic gluconeogenesis inhibitors. First, a hit compound (DMT: IC50 = 33.8 μM) characterized by a thienopyridine core was identified in a cell-based screening of our privileged small molecule library. Structure activity relationships (SARs) study showed that replaced the CF3 in the thienopyridine core could improve the potency and led to the discovery of 8e (IC50 = 16.8 μM) and 9d (IC50 = 12.3 μM) with potent inhibition of hepatic glucose production and good drug-like properties. Furthermore, the mechanism of 8e for the inhibition of hepatic glucose production was also identified, which could be effective through the reductive expression of the mRNA transcription level of gluconeogenic genes, including glucose-6-phosphatase (G6Pase) and hepatic phosphoenolpyruvate carboxykinase (PEPCK). Additionally, 8e could also reduce the fasting blood glucose and improve the oral glucose tolerance and pyruvate tolerance in db/db mice. The optimization of this class of derivatives had provided us a start point to develop new anti-hepatic gluconeogenesis agents.[Abstract] [Full Text] [Related] [New Search]