These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characteristics and aging of traffic-derived particles in a highway tunnel at a coastal city in southern China. Author: Hou C, Shao L, Hu W, Zhang D, Zhao C, Xing J, Huang X, Hu M. Journal: Sci Total Environ; 2018 Apr 01; 619-620():1385-1393. PubMed ID: 29734615. Abstract: Road traffic is one of the major sources of particulate matters in the atmosphere. Tunnels provide a semi-closed place to measure traffic-derived particles before the particles were photo-chemically modified in the open air. In this study, aerosol particles were collected in a tunnel, and an urban site for comparison at a coastal city in south China. The particles were analyzed by using a transmission electron microscope coupled with an energy-dispersive X-ray spectrometry. There were four groups of particles according to sources: tailpipe-emitted particles, wear debris, road dust, and secondary particles. Tailpipe-emitted particles included soot, organic, and a part of sulfate and metal particles. Wear debris were characterized by their distinct metal components. Road dust was composed of mineral particles and fly ash. Secondary particles were some sulfate particles and mixture particles. Sulfate particles were further divided into two subtypes: with and without organic coating. Sulfate particles with organic coating accounted for 56.2% of total sulfate particles in the tunnel, while the percentage was 36.9% at the urban site, indicating that sulfate particles were more easily coated by organics in the tunnel than the urban site. However, the aging degree of sulfate particles in the tunnel was weaker than that at the urban site, which was attributed to the absence of photochemical reactions in the tunnel environment. Some mixture particles had a core-shell structure (C-S particles). The composition and morphologies of the cores of the C-S particles were similar to those of mineral, metal, and mixture particles. The shells of the C-S particles were mainly composed of organics. The C-S particles were more aged than the sulfate particles with coating in the tunnel environment, suggesting that mineral and metal components could efficiently enhance particle aging in the absence of photochemical reactions.[Abstract] [Full Text] [Related] [New Search]