These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MiR-3662 suppresses hepatocellular carcinoma growth through inhibition of HIF-1α-mediated Warburg effect. Author: Chen Z, Zuo X, Zhang Y, Han G, Zhang L, Wu J, Wang X. Journal: Cell Death Dis; 2018 May 01; 9(5):549. PubMed ID: 29748591. Abstract: Glucose metabolic reprogramming from oxidative to aerobic glycolysis, referred as the Warburg effect, is a hallmark of tumor cells. Accumulating evidence suggests that a subset of microRNAs play pivotal roles in modulating such reprogramming of glucose metabolism in cancer cells. miR-3662 has been implicated previously in both pro-tumorigenic and anti-tumorigenic effects in several types of cancer. The expression level of miR-3662 is downregulated in acute myeloid leukemia, whereas increased miR-3662 expression is observed in lung adenocarcinoma. However, the roles and underlying mechanisms of miR-3662 in hepatocellular carcinoma (HCC) metabolic reprogramming remain unclear. Our present study revealed that miR-3662 was frequently downregulated in HCC tissues and cell lines. The low expression level of miR-3662 was associated with tumor size, tumor multiplicity, Edmondson grade, and tumor-node-metastasis stage. Gain-of-function and loss-of-function assays showed that miR-3662 dampened glycolysis by reducing lactate production, glucose consumption, cellular glucose-6-phosphate level, ATP generation, and extracellular acidification rate, and increasing oxygen consumption rate in HCC cells after treatment with the hypoxia mimetic CoCl2. Moreover, miR-3662 suppressed cell growth in vitro and in vivo, and induced G1/S cell cycle arrest. miR-3662 inhibited the activation of ERK and JNK signaling pathways in HCC. By combined computational and experimental approaches, hypoxia-inducible factor-1α (HIF-1α) was determined as a direct target of miR-3662. After treatment with the hypoxia mimetic CoCl2, miR-3662 regulated the Warburg effect and HCC progression via decreasing HIF-1α expression. Our findings uncover a mechanistic role for miR-3662/HIF-1α axis in HCC metabolic reprogramming, providing a potential therapeutic strategy in liver cancer.[Abstract] [Full Text] [Related] [New Search]