These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: UTSA-16 Growth within 3D-Printed Co-Kaolin Monoliths with High Selectivity for CO2/CH4, CO2/N2, and CO2/H2 Separation. Author: Lawson S, Al-Naddaf Q, Krishnamurthy A, Amour MS, Griffin C, Rownaghi AA, Knox JC, Rezaei F. Journal: ACS Appl Mater Interfaces; 2018 Jun 06; 10(22):19076-19086. PubMed ID: 29750498. Abstract: Honeycomb monoliths loaded with metal-organic frameworks (MOFs) are highly desirable adsorption contactors because of their low-pressure drop, rapid mass-transfer kinetics, and high-adsorption capacity. Moreover, three-dimensional (3D)-printing technology renders direct material modification a realistic and economic prospect. In this study, 3D printing was utilized to impregnate kaolin-based monolith with UTSA-16 metal formation precursor (Co), whereupon an internal growth was facilitated via a solvothermal synthesis approach. The cobalt weight loading in the kaolin support was varied systematically to optimize the MOF growth while retaining monolith mechanical integrity. The obtained UTSA-16 monolith with 90 wt % loading exhibited similar textural features and adsorption characteristics to its powder analogue while improving upon structural integrity. In comparison to previously developed 3D-printed UTSA-16 monoliths, the UTSA-16-kaolin monolith not only showed higher MOF loading but also higher compression stress, indicative of its robust structure. Furthermore, the 3D-printed UTSA-16-kaolin monolith displayed a comparable CO2 adsorption capacity to the UTSA-16 powder (3.1 vs 3.5 mmol/g at 25 °C and 1 bar), which was proportional to its loading. Selectivity values of 49, 238, and 3725 were obtained for CO2/CH4, CO2/N2, and CO2/H2, respectively, demonstrating good separation potential of the 3D-printed MOF monolith for various gas mixtures, as determined by both equilibrium and dynamic adsorption measurements. Overall, this study provides a novel route for the fabrication of UTSA-16-loaded monoliths, which demonstrate both high MOF loading and mechanical integrity that could be readily applied to various CO2 capture applications.[Abstract] [Full Text] [Related] [New Search]