These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sargassum wightii-synthesized ZnO nanoparticles - from antibacterial and insecticidal activity to immunostimulatory effects on the green tiger shrimp Penaeus semisulcatus. Author: Ishwarya R, Vaseeharan B, Subbaiah S, Nazar AK, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Al-Anbr MN. Journal: J Photochem Photobiol B; 2018 Jun; 183():318-330. PubMed ID: 29754050. Abstract: The green synthesis of metal nanoparticles using phytochemical from marine seaweeds is a fast-growing research field in nanotechnology. Here, the biosynthesis of zinc oxide nanoparticles was achieved using the hot water extract of Sargassum wightii. The hot water extract prepared from S. wightii (H Sw) and ZnO NPs were studied by UV-visible and FTIR spectroscopy, SEM and XRD. Then, both products were evaluated for antibiofilm activity towards aquatic pathogens. The nanoparticles' immunostimulating potential on green tiger prawns, Penaeus semisulcatus was studied through immersion and dietary administration. Shrimp immune parameters (i.e., total hemocytes count (THC), respiratory bursts (RBs), phenoloxidase (PO) and superoxide dismutase (SOD) activity) were significantly affected by exposure or ingestion of ZnO nanoparticles. In addition, the hot water extract and ZnO nanoparticles had high antibiofilm activity against Gram-positive (B. subtilis, S. aureus) and Gram-negative (S. sonnei, P. aeruginosa) microbial pathogens. It was accomplished that the ZnO nanoparticles can be used as the bacteriostatic and immunostimulant agents through immersion and dietary administration enhancing immunity of green tiger shrimp. Furthermore, the toxicity effects of ZnO nanoparticles were 100% at 24 h on Aedes aegypti 3 rd instar larvae at the concentration of 100 μg/mL and the greatest efficacy was accomplished by H Sw ZnO NPs against the Ae. aegypti after 24 h (LC50 49.22; LC90 86.96 mg/mL), if compared to the seaweed extract alone. Morphological and histological damages triggered by nanoexposure were investigated.[Abstract] [Full Text] [Related] [New Search]