These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Painful stimulation of a sensitized site in the forearm inhibits ipsilateral trigeminal nociceptive blink reflexes.
    Author: Drummond PD, Bell A, Vo L.
    Journal: Exp Brain Res; 2018 Jul; 236(7):2097-2105. PubMed ID: 29754196.
    Abstract:
    Exposure to moderate levels of ultraviolet B radiation (UVB) is painless but nevertheless induces an inflammatory response that sensitizes primary afferent nociceptors. Subsequently, heating the UVB-treated site can sensitize spinal nociceptors. We used a repeated-measures design to determine whether heating the UVB-treated site also triggers ipsilateral inhibitory controls. Specifically, a 2-cm diameter site on the forearm of 20 participants was exposed to UVB at twice the minimum erythema dose. 48 h later mechanical and thermal sensitivity had increased at the UVB-treated site, indicating primary hyperalgesia. In addition, sensitivity to blunt pressure had increased in the ipsilateral forehead, implying activation of an ipsilateral supra-spinal pro-nociceptive mechanism. Despite this, the area under the curve of the ipsilateral nociceptive blink reflex decreased when the UVB-treated site was heated to induce moderate pain. Together, these findings suggest that the UVB treatment sensitized primary nociceptive afferents and generated an ipsilateral supra-spinal pro-nociceptive mechanism. In addition, sensitization to heat induced by the UVB treatment strengthened an ipsilateral anti-nociceptive process elicited by heat-pain. Infrequent but enduring discharge of sensitized primary nociceptive afferents, driven by inflammation after UVB exposure, might initiate a lateralized supra-spinal pro-nociceptive influence that heightens awareness of impending harm on the sensitized side of the body. In addition, a lateralized anti-nociceptive response triggered by an intense barrage of nociceptive signals may help to differentiate stronger from weaker sources of pain.
    [Abstract] [Full Text] [Related] [New Search]