These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of foliar-applied iron complexed with lysine on growth and cadmium (Cd) uptake in rice under Cd stress. Author: Bashir A, Rizwan M, Ali S, Zia Ur Rehman M, Ishaque W, Atif Riaz M, Maqbool A. Journal: Environ Sci Pollut Res Int; 2018 Jul; 25(21):20691-20699. PubMed ID: 29754294. Abstract: Contamination of soils with cadmium (Cd) is a serious problem worldwide. Rice (Oryza sativa L.) is reported to accumulate relatively higher Cd contents in consumable parts and is considered a main source of Cd toxicity to humans from rice-derived products. The aim of this pot trial was to investigate the effect of foliar-applied iron (Fe) complexed with lysine on growth, photosynthesis, Cd concentration in plants, oxidative stress, and activities of antioxidants of rice in soil contaminated with Cd. Rice seedlings (30-day-old) were transferred to the soil, and after 2 weeks, different concentrations of Fe-lysine (0, 1.5, 3.0, 4.5, 6.0, and 7.5 mg L-1) were applied as a foliar spray once in a week for 4 weeks and plant samples were taken after 10 weeks of growth in the soil under ambient conditions. Foliar supply of Fe-lysine complex significantly enhanced the plant height, dry weights of plants, concentration of chlorophyll, and gas exchange attributes in Cd-stressed rice. Fe-lysine decreased the Cd concentrations in plants while increasing the Fe concentrations in rice seedlings being maximum with Fe-lysine of 6.0 mg L-1. Electrolyte leakage decreased while activities of key antioxidant enzymes increased with Fe-lysine compared to the control. According to the present results, Fe-lysine complex can effectively be used to reduce Cd concentrations in rice and probably in other crop species.[Abstract] [Full Text] [Related] [New Search]