These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Characterization and molecular modification of β-glucosidase from Citrobacter koser GXW-1]. Author: Jiang M, Lin H, Yin J, Wang Z, Pang H, Huang R, Du L. Journal: Wei Sheng Wu Xue Bao; 2017 Mar 04; 57(3):363-74. PubMed ID: 29756435. Abstract: OBJECTIVE: The aim of this study was to characterize β-glucosidase from Citrobacter koser GXW-1 isolated from soil and to improve the enzyme by molecular modification. MEHODS: A bacterial strain with β-glucosidase activity was screened from the soil around Wuming sugar mill in Guangxi by esculin-ferric ammonium citrate selecting plate. The 16S rDNA of the strain was obtained and analyzed. By searching GenBank database, the genes encoding β-glucosidase from the same genus Citrobacter were found. These sequences were aligned. Then, a gene encoding β-glucosidase was amplified by PCR. The recombinant plasmid pQE-cbgl was constructed. The recombinant protein was purified with Ni-NTA. The enzyme properties of the recombinant protein CBGL were studied in detail. At last, the wild enzyme CBGL was reformed by error-prone PCR and site-directed random mutagenesis. RESULTS: C. koser GXW-1 with β-glucosidase activity was isolated from the soil. A gene encoding β-glucosidase was cloned from the wild strain GXW-1. The properties of CBGL were identified. Its optimal pH and temperature were 6.0 and 45℃. Its Km and Vmax value were (11.280±1.073) mmol/L and (0.1704±0.0073) μmol/(mg·min), respectively. Its Ki values was (66.84±3.40) mmol/L. CBGL can hydrolyze α-pNPG, stevioside, daidzin and genistin. CBGL was modified by error-prone PCR and site directed random mutagenesis. A positive mutant W147F was obtained successfully. Its Vmax was 2.54 times that of the wild enzyme CBGL. CONCLUSION: CBGL not only can hydrolyze β-glycosidic bond, but also can hydrolyze the α-glycosidic bond in α-pNPG. Furthermore, CBGL can hydrolyze stevioside, daidzin and genistin. These characteristics indicate that the β-glucosidase CBGL has important applications in theoretical research and in industry.[Abstract] [Full Text] [Related] [New Search]